Power Supply System

All the following components displayed in this section can be found on the engine side of the boom machine. The image to the right show the location of the engine for a quick visual reference.

Batteries

The boom machine is equipped with 2 12-Volt 110ah batteries. These batteries are used to power the control system and in the event of power failure, they can be used to activate emergency operations.

Fuse Box

- Fuse 13: 80 amps, connect to "Relay & Fuse Box". •
- Fuse 14: 200amps, connect to Emergency Pump-Motor. ٠
- Fuse 15: 150 amps, connect to Engine Preheating Device. •
- Fuse 16: 125 amps, connect to Engine Generator. •

	Relay Description			
K1	Beacon & Buzzer			
K2	Power supply to Main Controller, Display & Chassis Device			
K3	Diesel Pump Relay			
K4	Horn Relay			
K5	Total Power Relay			
K6	Spare			

No.		Fuse Description
FU1	30 A	Engine ECU
FU2	25A	Beacon & Buzzer
FU3	30A	Power supply to Main Controller, Display & Chassis Device
FU4	20A	Diesel Pump
FU5	25A	FU7+FU8
FU6	30A	FU9+FU10+FU11
FU7	7.5A	Horn
FU8	5A	Key Switch, Bypass Switch, K2 & K5
FU9	7.5A	Sensor Power, Engine ECU Logic Supply + FU12
FU10	10A	PVG Valve
FU11	15A	Power supply for electrical equipment on boom and platform
FU12	5A	Engine Generator Magnetization

Engine

- 1. Coolant temperature sensor
- 2. Intake pressure & temperature sensor
- 3. Fuel injector
- 4. Fuel rail pressure sensor
- 5. Electrical plug (connect to engine ECU)
- 6. High Pressure Pump FCU (Fuel Control Unit)
- 7. Crankshaft speed sensor
- 8. Engine-oil pressure sensor
- 9. Generator
- 10. Camshaft speed sensor
- 11. Exhaust gas recirculation regulator
- 12. Start-motor

Diagnose Menu Interface

The Diagnostic panel contains the basic information for monitoring operation of the machine.

Row "A" displays the pages and options available in the lower part of the screen and is controlled by the corresponding buttons on row "B".

The upper band shows:

- Alarm indicator light
- Steering mode selection indicator light
- Parking brake active indicator light
- Differential lock active indicator light
- Front axle lock active indicator light
- Movement speed selection indicator light: slow/fast
- Controls position indicator light: ground/platform

The central band shows:

- The engine rev counter to the left hand side
- The number of working hours in the center, the batteries voltage, the fuel level and the engine fault code
- The engine oil pressure indicator and the engine water temperature indicator on the right hand side.

The bottom band shows the information shown on the pages that can be accessed:

- Engine data (RPM, drive torque percentage measured, coolant temperature, oil pressure, fuel consumption, operating hours, quantity of fuel used)
- Operational data (angular inclination of main boom, angular inclination of riser boom, inclination of the platform, inclination of the chassis on the horizontal plane, load measured on platform);
- Options settings (hydraulic preheat enable; Auto center steer; main boom retract confirmed; range extender auto start sw; engine hood open sw; main boom angle<30°confirmed)

The setting interface could be entered by pressing the setting button and holding for one second. The optional function can be turned on or off without a password, after entering the setting interface. The procedures are as follows:

- Pressing "← / ←" or "← / –" is used to choose the item separately. The chosen item would be shown in yellow background.
- 2. Pressing "On/Off" and holding on is used to turn on or off the corresponding function.
- 3. It returns back to main interface, when the button "Esc" is pressed.

Diagnose Menu Interface Symbols

After entering boot interface, the display will automatically switch to the main interface after a few seconds.

The top row of icons are listed in the chart below.

MF STI	System no alarm				System alarm		
.	Power supply: Engine gene	erator		HF SQ	Power supply: 12V-battery		
	Engine preheat: Off			HE SQ	Engine	prehea	ıt: On
ST, ST2	Mode Selected: 4-Wheel	T.	Mode	Selecte	ed: Crab	ATT, SET	Mode Selected: 2-Wheel
	Work-light: Off				Work-lig	ght: On	
AF 352	Engine oil pressure: Normal			4 550 149 gaz	Engine oil pressure: Low		
	Differential-lock: Off				Differen	tial-loc	k: On
 -&- 147.512	Oscillating system: Off				Oscillati	ing sys	tem: On
	Engine fan reversing syster	n: Off			Engine	fan rev	ersing system: On
AT, CO	Slow Speed		High To	orque N	Node	ATLEY	Fast Speed
552 AA	Platform control			S AR SPU	Ground	contro	l

Engine Status Menu

Display read signals from the engine ECU through the CAN bus.

- 1. At the Main Menu, press the Engine button to enter the Engine Status Menu.
- 2. In the Engine Status Menu, information for the engine will be displayed.
- 3. Press the "Esc" button to go back.

Engine Action Spe		0 rpm		
Actual Percent Tor		-125.0 %		
Coolant Temperat		-40.0 °C		
Oil Pressure			0.0 kPa	
Engine Fuel Rate		0.0 L/h		
Engine Hours		0.0 hr		
Total Fuel Used		0.0 L		
Request Speed		0 rpm		
Engine Data	Set	Esc	Menu	

Vehicle Data Menu

Displays read CAN bus signals from master controller on turntable. The values are calibrated on the machine, not sensor raw data.

- 1. To be see information detected by the machine sensors, please press the Data button.
- Press the up button "
 I +" or down button "
 I -" to switch between the two pages of machine information.
- 3. Press the "Esc" button to go back.

Diagnose Menu

- 1. To diagnose the machine, press the Menu button.
- 2. Once you are in the Menu interface, press the Enter button (
- 3. When you are in the Diagnose Menu, you can view the following information:
 - Machine software version
 - Input/Output signals
 - Sensors information
 - Parameters of each action
 - Engine information

Basic Data Menu

- 1. Once you are in the Diagnose Menu, press the Enter button () to enter the Basic Data Menu to view the machine software version and the machine model.
- 2. In the Basic Data Menu, both the machine software version and the machine model are now displayed.
- 3. Press the "Esc" button to go back.

Controller I/O Status Menu

Displays read CAN signals from the controller to get I/O status.

- 3. Press the Enter button () to enter the menu of the selected controller and view the Input/Output signal data.
 - The tables below contain the values for the relevant controllers are as follows

Pin Definition

Park Brake Release Valve

Differential Lock Valve

Frame Leveling Left (39) / Right (55)

Oscillating Rear-Axle: Left Valve A

Oscillating Rear-Axle: Left Valve B

Oscillating Rear-Axle:Right Valve A

Oscillating Rear-Axle:Right Valve B

Frame Leveling Proportional Valve

Steer Valve: 4-Wheel Mode (13) / Crab Mode (29)

- Chassis Controller table values start on page 44.
- Turntable Controller table values start on page 45
- Platform Controller table values start on page 46
- 4. Press the "Esc" button to go back.

C1: 14, 39, 55

C1: 15, 40

C1: 16, 41

C1: 30, 42

C1: 31, 43

C1: 32, 44

C2: 14. 48

C2: 15, 67

C2: 13, 29, 47

True or False in this interface is only a signal received or sent in the controller, it does not mean that the actuator has received the relevant signal!

Chassis Controller

When necessary, it is still necessary to measure the signal at the corresponding component.

Diagnose

Value

0 mA

Chassis Controller					
	Pin Definition	Value			
C2: 16, 32, 68	Steer Valve: Left (16) / Right(32)	0 mA			
C2: 34	Left Oscillating Cylinder: Signal 3 NO	True: Oscillate False: Lock			
C2: 35	Left Oscillating Cylinder: Signal 1 NC	True: Lock False: Oscillate			
C2: 36	Right Oscillating Cylinder: Signal 4 NO	True: Oscillate False: Lock			
C2: 37	Right Oscillating Cylinder: Signal 2 NC	True: Lock False: Oscillate			
C2: 42	Turntable Proximity Switch: Left				
C2: 55	Turntable Proximity Switch: Right	Irue: At middle position False: Out of middle position			
C2: 56	Turntable Proximity Switch: Middle				
C2: 57	Steer Angle: Front-Axle	2500mV			
C2: 58	Steer Angle: Rear-Axle	2500mV			

Turntable Controller				
	Pin Definition	Value		
C1: 8	Main boom lower-down switch	True: Lower Down False: Standby		
C2: 62	Main boom lift-up switch	True: Lift Up False: Standby		
C1: 9	Main boom extend-out switch	True: Extend Out False: Standby		
C1: 10	Main boom retract-in switch	True: Retract In False: Standby		
C1: 11	Engine: Air filter	False		
C1: 14, 39, 55	Drive forward(39) / backward(55)	0 mA		
C1: 24	Main boom down limit switch	True: Stowed False: Raised		
C1: 25	Lower boom down limit switch	True: Stowed False: Raised		
C1: 26	Main boom: Chain limit switch	True: Normal False: Alarm		
C1: 27	GPS: Machine lock low	False		
C1: 28	Emergency pump switch	True: Input Signal False: Standby		
C1: 29	Key switch signal	True: Ground Control False: Platform Control		
C1: 30, 42	Hydraulic generator proportional valve	0 mA		
C1: 47				
C1: 36	Jib lift-up switch	True: Lift Up False: Standby		
C1: 52	Jib lower-down switch	True: Lower Down False: Standby		
C1: 37	Hydraulic oil temperature sensor	False		
C1: 38	Engine: Alternator signal	True: Standby False: Alternator Running		
C1: 45	GPS: Hour meter (running signal)	False		
C1: 46	To Motion beacon relay	Machine Running \rightarrow True Standby \rightarrow False		
C1: 53	Fuel level	19.2%		

85-J Diesel - Service & Parts Manual - 95804

	Turntable Controller					
	Pin Definition	Value				
C1: 54	Engine start / stop button	True: Signal Input False: Standby				
C2: 3	Low speed switch	True: Signal Input False: Standby				
C2: 4	High speed switch	True: Signal Input False: Standby				
C2: 5	Platform level-up switch	True: Level Up False: Standby				
C2: 6	Platform level-down switch	True: Level Down False: Standby				
C2: 9	Lower-boom lift-up switch	True: Lift Up False: Standby				
C2: 10	Lower-boom lower-down switch	True: Lower Down False: Standby				
C2: 19	Frame level-left switch	True: Level Left False: Standby				
C2: 20	Frame level-right switch	True: Level Right False: Standby				
C2: 21	Platform swing: right switch	True: Rotate Right False: Standby				
C2: 22	Platform swing: left switch	True: Rotate Left False: Standby				
C2: 26	Turntable rotation: right switch	True: Rotate Right False: Standby				
C2: 41	Turntable rotation: left switch	True: Rotate Left False: Standby				
C2: 38	Chassis by-pass switch	True: Standby False: By-Pass Input				
C2: 46	Overload indicator	$Overload \to True \to Light \ Up$				
C2: 49	Engine start signal (output to engine ECU)	True: Engine Start False: Standby				
C2: 50	Hydraulic-oil radiator (output to KA8)	True: Radiator Running False: Standby				
C2: 51	Emergency pump (output to KM2)	True: Emergency Pump Running False: Standby				
C2: 52	Horn (output to KA4)	True: Horn Sound False: Standby				
C2: 54	GPS: Machine lock high	False				
C2: 61	BA/BT mode switch	True: Modified False: Standby				
C2: 64	Alarm buzzer (chassis)	False				

Platform Controller					
	Pin Definition	Value			
C1: 8	Drive-joystick analog 1	0.00%			
C1: 9	Drive-joystick analog 2	0.00%			
C1: 10	Turntable-joystick analog (1, X)	0.00%			
C1: 11	Hydraulic generator: start/stop	False			
C1: 13	Force-drive switch	False			
C1: 14, 39, 55	Jib up/down current	0 mA			
C1: 24	Jib amplitude joystick analog (1, Y)	0.00%			
C1: 25	Platform swing joystick analog (2, X)	0.00%			

85-J Diesel - Service & Parts Manual - 95804

Platform Controller						
	Pin Definition	Value				
C1: 26	Main boom amplitude joystick analog (2, Y)	0.00%				
C1: 31, 43, 59	Platform swing current	0 mA				
C1: 36	Load analog signal A	1368mV				
C1: 52	Load analog signal B	1455mV				
C1: 38	Ultrasonic top crash prevention, Left	50mV				
C1: 54	Ultrasonic top crash prevention, Right	0mV				
C2: 3	Driving speed mode: Slow	False				
C2: 4	Driving speed mode: Fast	True				
C2: 6	Jib low proximity switch	True				
C2: 9	Platform level-up switch	True: Level up False: Standby				
C2: 10	Platform level-down switch	True: Level down False: Standby				
C2: 11	Main boom retract-in switch	True: Retract in False: Standby				
C2: 12	Main boom extend-out switch	True: Extend out False: Standby				
C2: 19	Frame level-left switch	True: Level left False: Standby				
C2: 20	Frame level-right switch	True: Level right False: Standby				
C2: 21	Lower-boom lift-up switch	True: Lift up False: Standby				
C2: 22	Lower-boom lower-down switch	True: Lower down False: Standby				
C2: 27	Dead-man switch of middle joystick	True: Activated False: Standby				
C2: 28	Crab Mode switch	True: Crab Mode False: Standby				
C2: 41	4-Wheel Mode switch	True: 4-Wheel Mode False: Standby				
C2: 34	Dead-man switch of left joystick	True: Activated False: Standby				
C2: 35	RPM + switch	True: RPM + False: Standby				
C2: 36	RPM - switch	True: RPM - False: Standby				
C2: 37	Axle differential-lock switch	True: Differential-lock False: Standby				
C2: 42	Right turn switch	True: Turn right False: Standby				
C2: 61	Left turn switch	True: Turn left False: Standby				
C2: 43	Alarm buzzer (platform)	True: Alarm False: Standby				
C2: 46	Overload indicator	$Overload \to True \to Light \ up$				
C2: 54	Emergency pump switch	True: Signal input False: Standby				
C2: 55	Horn switch	True: Signal input False: Standby				
C2: 56	Anti-pinch	True				

Platform Controller				
	Pin Definition	Value		
C2: 57	BA/BT mode switch	True: Modified False: Standby		
C2: 58	Bypass switch	True: Signal input False: Standby		
C2: 62	Dead-man switch of drive joystick	True: Signal input False: Standby		

Sensor Status Menu

Displays read original raw data from the sensors through the CAN bus.

For instructions on how to enter the Diagnose Menu, refer to page 43.

- Once you are in the Diagnose Menu, press the down button "♣ / –" to select "Sensor Status" then press the Enter button (
- Once you are in the Sensor Status Menu, press the up button "
 I → " or down button "
 I → " to select the sensor you want to select.
- 3. Press the Enter button () to enter the menu of the selected sensor and display the related data.
- 4. Press the "Esc" button to go back.

Controller I/O Status

Sensor Status
Action Control Status
Engine Alarm

Chassis Angle
Sensor Status

Chassis Angle
LowBoom Angle
LowBoom Angle
Boom Angle

Diagnose

Basic Data

The values shown in the charts below for each angle are for reference of how the information will be displayed when viewed.

Chassis Ang	le	Jib Leveling Angle		Low Boom Angle	
Chassis Angle X1	-1.4 deg	Jib Angle 1	224.2 deg	Low Boom Angle	-4.0 deg
Chassis Angle X2	1.4 deg	Jib Angle 2	135.8 deg		
Chassis Angle Y1	-0.1 deg				
Chassis Angle Y2	0.1 deg				

Turntable Y Angle		Axle Angle		Boom Angle	
Turntable Y Angle 1	-0.5 deg	Front Axle Angle 1	0.0 deg	Main Boom Angle 1	-65.0 deg
Turntable Y Angle 2	0.5 deg	Front Axle Angle 2 0.0 deg		Main Boom Angle 2	65.0 deg
		Rear Axle Angle 1	0.0 deg		
		Rear Axle Angle 2	0.0 deg		

Boom Lengt	h	Load Cell Se	nsor	Fuel Level Gauge	
Main Boom Length 1	0 In	Load Cell Analog 1 1368 mV/V		Fuel Sensor Analog	19.2%
Main Boom Length 2	-0 In	Load Cell Analog 2	1457 mV/V		

Action Control Status Menu

Action control status shows machine movement command request and output percentage by movement groups.

- 3. Press the Enter button () to enter the menu of the selected function and display the related data.
- 4. Press the "Esc" button to go back.

Diagnose Basic Data Controller I/O Status Sensor Status Action Control Status Engine Alarm Movement Diagnose LowBoom Amplitude Jib Levelling Action Boom Amplitude Frame Levelling Boom In/Out Action Travel Movement lib Amplitude Platform Rotation Turntable Rotation

	-	-				
Low Boom Amplitude		Boom Amplitude		Boom In/Out Action		
Platform Joystick Analog	False	Platform Joystick Analog	-0.4%	Platform Joystick Analog	False	
Ground Control Switch	False	Ground Control Switch	False	Ground Control Switch	False	
PWM Output A	0.0%	PWM Output A	0.0%	PWM Output A	0.0%	
PWM Output B	0.0%	PWM Output B	0.0%	PWM Output B	0.0%	
PWM Output Percent A	0.0%	PWM Output Percent A	0.0%	PWM Output Percent A	0.0%	
PWM Output Percent B	0.0%	PWM Output Percent B	0.0%	PWM Output Percent B	0.0%	

Jib Amplitude		Platform Rotation	n Turntable Rotation		
Platform Joystick Analog	-0.2%	Platform Joystick Analog	-0.4%	Platform Joystick Analog	-0.4%
Ground Control Switch	False	Ground Control Switch	False	Ground Control Switch	False
PWM Output A	0 mA	PWM Output A	0 mA	PWM Output A	0.0%
PWM Output B	0 mA	PWM Output B	0 mA	PWM Output B	0.0%
PWM Output Percent	0.0%	PWM Output Percent	0.0%	PWM Output Percent A	0.0%
				PWM Output Percent B	0.0%

Jib Leveling Action		Frame Leveling		Travel Movement		
Platform Joystick Analog	False	Platform Control Signal	False	Travel Speed PWM Output A	0 mA	
Ground Control Switch	False	Ground Control Signal	False	Machine Travel_PWM B	0 mA	
PWM Output A	0.0%	PWM Output A	0 mA	Travel Speed Percent	0.0%	
PWM Output B	0.0%	PWM Output B	0 mA			
PWM Output Percent A	0.0%	Percent Output Signal	0 mA			
PWM Output Percent B	0.0%	Percent Output	0.0%			

The values shown in the charts below for each angle are for reference of how the information will be displayed when viewed.

Displays the engine ECU's broadcasting DM1 message.

- 1. Once you are in the Diagnose Menu, press the down button "↓ / –" to select the "Engine Alarm" then press the Enter button (
- 2. Once you are in the Engine Alarm menu, you can view SPN (Suspect Parameter Number) and the FMI (Failure Mode Identifier).
- 3. Press the "Esc" button to go back.

The values shown in the chart are for reference of how the information will be displayed when viewed.

Engine Regeneration Diagnose

- 1. Once you are in the Diagnose Menu, press the down button "+ / -" to select "Engine Regeneration Diagnose" then press the Enter button (
- 2. Once you are in the Engine Regeneration Diagnose Menu, press the up button "+ / +" or down button "+ / -" to select the function you want to select.
- 3. Press the unction and display the related data.
- 4. Press the

~	Entor	hutton		to optor	tho	مامد	stad f
e		bullon			ше	20100	leu n
е	"Esc"	button	to go	back.			

Basic Contr Senso Actio Engir	Data roller or Sta n Cor ne Ala	DIAGN	OSE Engine Reg Diagnose	eneration	Engine Regeneration DPF Regeneration Strategy ASH Load Oil Exchange Regeust	on Di	agno	ostic
DPF	-	/- W						
DPF_Le	vel	DPF L	evel:0	0.0 %				
Process Re	equire		NO Derating					
DPF Lamp	Status	Stop o High exhaust	friving temperature	수 ~				
OM1 Lamp	Status	1	N					
Regener	rsation	Remain Time	0 min	utes				
		2	ESC					
ASH		-						
ASH Load	DEF	Sys_Reaction	Urea Lamp	DM1 Lamp				
	EU	No Derating	55.	A				
0.0 %	EPA	No Derating		$\overline{\langle i \rangle}$				
			ESC					
Engine	Oil	Change						
Change Reason	DEF	Sys_Reaction	Urea Lamp	DM1 Lamp Status				
Oil Normal	EU	No Derating						
Sir Horniar	EPA	No Derating						MEC
			ESC					ART_6212

Engine Alarm

Settings Interface

Quick Setup

- 1. Press and hold the "Set" button for several seconds then release to enter the "Quick Setup" interface.
- 2. Press the "Esc" button to go back when you are done.

Boom Retract Confirmed

- The sensor is faulty and the controller does not know the status of the boom.
- Retract boom in emergency way, then turn on this function. In this method, machine can be driven to warehouse for repairing.

PPSS Mode

• This function can be switched on when ultrasonic sensors are installed on the platform frame to prevent the platform frame from colliding with obstacles above it.

Tool Interface Adjustments

- 1. If the screen brightness, year/time, and or the language needs to be adjusted then follow these steps.
- 2. Press the Menu button then press the down button "♣ / ■" to select the "Tooling" menu and press the Enter button (◀).
- 3. Use the respective buttons to make the changes need to the selected function.
- 4. Press the "**Esc**" button to go back when you are done.

Weight Off T: 0.0 hr 0.00 V 0.00 V

Function Setting Menu

- 1. From the Main Menu, press the Menu button to enter the Menu interface.
- In the Menu interface, press the down button "↓ / –" to select the "Password" menu and press the Enter button (
- In the Password Menu, press the left arrow button "←" and the right arrow button "→" to select the individual characters and press the Enter button (
 Ito enter the select character.
- Enter the password "8271" then press and hold the Enter button (
 L) to enter the Function Setting Menu.

Function Parameter Menu

Function parameters set functions on/ off. The display sends button action to the controller, then reads controller feedback status for each function on or off.

- After following the instructions to enter the Function Setting Menu on page 52, press the Enter button (
) on "Parameter Setting".
- In the Parameter Setting Menu, select the Function Parameter and press the Enter button (
- 3. In the Function Parameter menu, you can enable or disable certain machine functions.

Limit Parameter

- 1. After following the instructions to enter the Function Setting Menu on page 52, press the Enter button () on "Parameter Setting".
- 3. Limit parameters sets the engine rpm and output limitation for machine movements.

The values shown in the chart are for reference of how the information will be displayed when viewed.

LowBoom Up Speed	1600rpm	4-Wheel Mode Traction Speed	1800rpm
LowBoom Down Speed	1600rpm	Steering Speed	1200rpm
Boom Up Speed	2000rpm	Boom Out Max Reduction Percent	35.2%
Boom Down Speed	1800rpm	Boom In Min Reduction Percent	47.2%
Boom Out Speed	1600rpm	Boom up/down follows out reduction ratio	85.2%
Boom In Speed	1600rpm	Boom Up Max Open Follows LowBoom	50.0%
Jib Up Speed	1200rpm	Boom Max Angle Reduction Percent	75.2%
Jib Down Speed	1200rpm	Jib Open Follow Platform Right Rotation	32.0%
Platform CW Rotation Speed	1000rpm	Jib Open Follow Platform Left Rotation	32.0%
Platform CCW Rotation Speed	1000rpm	MC43 one key leveling Output Ratio	100.0%
Turntable CW Rotation Speed	1000rpm	Turntable Follow Out Reduction Ratio	83.2%
Turntable CCW Rotation Speed	1000rpm	Jib Up PVG Open Speed	50.0%
Multi Action Speed	2300rpm	Jib Down PVG Open Speed	43.2%
Jib Up Leveling Engine Speed	1400rpm	Boom down max open follow lowboom	68.8%
Jib Down Leveling Engine Speed	1400rpm	Boom down min angle reduction percent	50.0%
High Speed Driving Speed	2400rpm	Generator High Power Speed	2000rpm
Climbing Speed Driving Speed	1800rpm	Generator Low Power Speed	1800rpm
Low Speed Driving Speed	1500rpm	Generator High Power Current	1050mA
High Altitude Driving Speed	1200rpm	Generator Low Power Current	850mA

Movement Parameter

- 1. After following the instructions to enter the Function Setting Menu on page 52, press the Enter button () on "Parameter Setting".
- 2. In the Parameter Setting Menu, press the down button "♣ / –" to select the Movement Parameter and press the Enter button (◀).
- 3. In the Movement Parameter Menu, you can see the parameters of the machine during an action.
- 4. Press the up button "← / ➡" or down button "← / ➡" to select the function you want to select then

press the Enter button (\blacksquare) on the selected function.

The values shown in the chart are for reference of how the information will be displayed when viewed.

Low Boom Amplitude					
P508 Up start slope	5000ms				
P509 Up stop slope	3000ms				
P510 Down start slope	4000ms				
P511 Down stop slope	2000ms				
P801 Up speed percent	91.2%				
P802 Down speed percent	80.0%				
P803 Up multi speed percent	66.0%				
P804 Down multi speed percent	64.8%				

Jib Amplitude					
P588 Up start slope	1000ms				
P591 Down stop slope	1140ms				
P589 Up stop slope	2000ms				
P590 Down start slope	2000ms				
P821 Up speed percent	95.2%				
P822 Down speed percent	96.0%				
P823 Up multi speed percent	80.0%				
P824 Down multi speed percent	75.2%				

Turntable Rotation					
P648 CCW start slope	3500ms				
P649 CCW stop slope	3500ms				
P650 CW start slope	3500ms				
P651 CW stop slope	3500ms				
P836 CCW speed percent	50.0%				
P837 CW speed percent	50.0%				
P838 CCW multi speed percent	44.8%				
P839 CW multi speed percent	44.8%				

Travel Movement	
P865 Forward climbing percent	36.0%
P866 Backward climbing percent	32.0%
P867 Forward big steer/manual slow	40.0%
P868 Backward big steer/manual slow	40.0%
P869 Forward big steer percent	30.0%
P870 Backward big steer percent	32.0%
P415 Steer speed	100.0%

Boom Amplitude					
P548 Up start slope	2000ms				
P549 Up stop slope	4000ms				
P550 Down start slope	5000ms				
P551 Down stop slope	1500ms				
P811 Up speed percent	80.0%				
P812 Down speed percent	90.0%				
P813 Up multi speed percent	82.0%				
P814 Down multi speed percent	90.0%				

Chassis Leveling		
Left start slope	2500ms	
Left stop slope	1000ms	
Right start slope	2500ms	
Right stop slope	1000ms	
Left multi speed percent	78.0%	
Right multi speed percent	88.0%	
Left speed percent	64.8%	
Right speed percent	64.8%	

Jib Leveling		
P707 Up start slope	2000ms	
P708 Up stop slope	2000ms	
P709 Down start slope	2000ms	
P710 Down stop slope	2000ms	
P811 Up percent	64.8%	
P812 Down percent	64.8%	
P813 Up multi speed percent	44.8%	
P814 Down multi speed percent	50.0%	

Boom In/Out Action		
P568 Out start slope	5000ms	
P569 Out stop slope	2000ms	
P570 In start slope	3000ms	
P571 In stop slope	2000ms	
P816 Out speed percent	96.0%	
P817 In speed percent	74.0%	
P818 Out multi speed percent	73.2%	
P819 In multi speed percent	66.0%	

Platform Rotation		
P628 CW start slope	1000ms	
P629 CW stop slope	1500ms	
P630 CCW start slope	1000ms	
P631 CCW stop slope	1500ms	
P931 CW speed percent	80.0%	
P832 CCW speed percent	80.0%	
P833 CW multi speed percent	44.8%	
P834 CCW multi speed percent	44.8%	

Travel Movement		
P668 Forward start slope	2500ms	
P669 Forward stop slope	1500ms	
P670 Backward start slope	2500ms	
P671 Backward stop slope	1500ms	
P861 Forward safety slow	22.0%	
P862 Backward safety slow	16.0%	
P863 Forward fast percent	96.0%	
P864 Backward fast percent	88.0%	

Calibration Setting

If the sensor or MC43FS (controller) fails, the corresponding sensor needs to be re-calibrated.

- After following the instructions to enter the Function Setting Menu on page 52, press the down button "➡ / ■" to select the "Calibration Setting" menu and press the Enter button (➡).
- In the Sensor Calibration menu, using the up button "↑ / +" and/or down arrow "↓ / =" to select the function you want to calibrate and then press the Enter button (【).

The following example is used an example to demonstrate how to recalibrate a sensor.

- 1. Take "chassis angle" as an example: If operator replaces a new tilt sensor, the user needs to drive the machine to a level ground first, and then enter the calibration interface, as shown in the following figure.
- 2. Press & hold "XZero" button for several seconds to calibrate the X-axis, press & hold "YZero" button for several seconds to calibrate the Y-axis.

Alarm Logger

- After following the instructions to enter the Function Setting Menu on page 52, press the down button "↓ / =" to select the "Alarm Logger" menu and press the Enter button (【)).
- 2. In the Alarm Logger menu, you can browse the machine's historical fault codes.
- 3. To download the Alarm Logger data, make sure that the machine is parked on a flat, level and firm surface.
- 4. Turn the machine off and plug in a USB into the USB port.
- 5. Turn the machine on with the USB still in the USB port and the image to the right will appear on the interface.

First Insert USB to USB port.

ToUSB

Then push ToUSB button.

Sleep Mode Set Menu

- After following the instructions to enter the Function Setting Menu on page 52, press the down button "➡ / =" to select the "Sleep Mode Set" menu and press the Enter button (<).
- 2. In the Sleep Mode Set, you can choose to enable or disable the Diagnostic Panel auto-dimness, or change the length before the screen dims.
 - The default dormancy time of the display is 5 minutes (300 seconds).
 - The minimum settable dormancy time is 1 minute (60 seconds).

Sensors and Calibration

Tilt Sensor

When the machine is raised, the maximum tilt angle allowed by the machine is 3°.

The tilt sensor will monitor the horizontal angle value of the chassis in real time. If the tilt angle of the chassis is too large, the system will give an alarm and prohibit continued work.

OSCILLATE SENSORS TILT SENSOR

If you want to see detailed information detected by the machine sensors, refer to page 42 for Machine details.

Tilt Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground. Make sure that the tilt value of the machine for both the X-axis and Y-axis is 0°.
- 2. From the Main Menu, press the Menu button and from the Menu interface, press the down button "-/-" to select the "Password" menu and press the Enter button (
- Enter the password "9735," then press and hold the Enter button (the Function Setting Menu.
- 4. Press the down button "+ / -" to select the "Calibration Setting" menu and press the Enter button (
- 5. Inside the Sensor Calibration menu, select "Chassis Angle" and press the Enter button (

TILT

SENSOR

- 6. Press & hold "XZero" button for several seconds to calibrate the X-axis.
- 7. Press & hold "YZero" button for several seconds to calibrate the Y-axis.

Axle Angle Sensor

The analogue voltage value is about 2500mV when the wheel is in the neutral position.

Chassis Controller

2:57	Steer angle: Front-axle	2500mV
2: 58	Steer angle: Rear-axle	2500mV

С С

Axle Angle Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground. Make sure that the front and rear wheels are in the neutral position.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "♣ / –" to select the "Password" menu and press the Enter button (♣).

- 3. Enter the password "9735," then press and hold the Enter button () to enter the Function Setting Menu.
- Press the down button "♣ / =" to select the "Calibration Setting" menu and press the Enter button (【】).
- 5. Inside the Sensor Calibration menu, select "Axle Steer Align" and press the Enter button (
- 6. Press & hold "Front Steer Align" button for several seconds to calibrate the front axle
- 7. Press & hold "Rear" button for several seconds to calibrate the rear axle.

Turntable Level Sensor

Detects the Y-angle of the turntable and compensates for the following angle of the main boom in articulating mode.

Turntable Level Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "↓ / =" to select the "Password" menu and press the Enter button (↓).
- Enter the password "9735," then press and hold the Enter button (
 to enter the Function Setting Menu.
- Inside the Sensor Calibration menu, select "Turntable Y Angle" and press the Enter button (
- 6. Press & hold "Set" button for several seconds to calibrate the sensor.

Low Boom Angle Sensor

Chassis Controller		
C1: 25	Lower Boom Down Limit Switch	True: Stowed False: Raised

Low Boom Angle Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground. Raise the riser boom so that the angle is 0°.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "♣ / =" to select the "Password" menu and press the Enter button (♣).
- Model Switch
 Articular

 Boom Angle
 400

 Boom Angle
 400

 Boom to Turntable Angle
 400

 It Leveling Angle
 400

 Rear Axle Angle
 400

 Rear Axle Angle
 000

 Rear Axle Angle
 000

 Rear Axle Angle
 000

 Boom Load
 Set
 Esc

 Michael Strom Load
 Set
 Esc

 Michael Strom Load
 Set
 Esc

 Boom Boom Set
 Esc
 Boom Boom Set
 Boom Boom Set

 Boom Length
 Esc
 Esc
 Boom Boom Set

LOW BOOM

PROXIMITY

SWITCH

LOW BOOM

ANGLE SENSOR

- 3. Enter the password "9735," then press and hold the Enter button (
- Press the down button "➡ / ■" to select the "Calibration Setting" menu and press the Enter button (【】).
- 5. Inside the Sensor Calibration menu, select "Low Boom Angle" and press the Enter button (
- 6. Press & hold "Set" button for several seconds to calibrate the sensor.

Main Boom Length & Angle Sensor

The sensor can monitor the length and angle of the main-boom in real time. There are 2 kinds of switches that can detect the state of the mainboom.

- Down limit switch
- Chain detection switch.

Operators can check whether the switches are faulty in the parameters interface of main controller.

LENGTH & ANGLE SENSOR

	AKT_0212
Model Switch	Articulated
Boom Angle	65.0 deg
Low Boom Angle	-4.0 deg
Boom to Turntable Angle	64.0 deg
Low Boom to Turntable Angle	-3.0 deg
Boom Length	-0 In
Chassis Tilt Angle X	0.4 deg
Chassis Tilt Angle Y	
Jib Leveling Angle	-4.0 deg
Turntable Y Angle	-0.5 deg
Front Axle Angle	0.0 deg
Rear Axle Angle	0.0 deg
Hydraulic Oil Temperature	2.0 °C
Platform Load	39.3 Lb
Load Chart	600.0 Lb
Engine Data Set	Esc Menu

ILLUSTRATION No.

Turntable Controller			
C1: 24	Main Boom Down Limit Switch	True: Stowed False: Raised	
C1: 26	Main Boom: Chain Detection Switch	True: Normal False: Alarm	

DOWN LIMIT SWITCH

Boom Angle Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground. Make sure that the main boom is fully retracted and the boom angle is 0°.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "♣ / ■" to select the "Password" menu and press the Enter button (♣).
- Enter the password "9735," then press and hold the Enter button (
 to enter the Function Setting Menu.
- Press the down button "➡ / ■" to select the "Calibration Setting" menu and press the Enter button (
- 5. Inside the Sensor Calibration menu, select "Boom Angle" and press the Enter button (
- 6. Press & hold "Set" button for several seconds to calibrate the sensor.
- 7. Press "Esc" button to escape from above interface, then select "Boom Length".
- 8. Under the premise that the main-boom is fully retracted, press the "Zero" button to calibrate the retracted length;
- 9. Extend the main-boom completely, and press the "Max" button to calibrate the extended length.

Jib Level Sensor

The sensor can monitor the angle of the jib in real time to ensure the safety of the operator.

Jib Level Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground and that the platform is level.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "↓ / –" to select the "Password" menu and press the Enter button (▲).

JIB LEVEL SENSOR

- 3. Enter the password "9735," then press and hold the Enter button (
- Press the down button "➡ / =" to select the "Calibration Setting" menu and press the Enter button (【]).
- 5. Inside the Sensor Calibration menu, select "Jib Leveling Angle" and press the Enter button (
- 6. Press & hold "Set" button for several seconds to calibrate the sensor.

Load Sensor & Signal Amplifier

Load sensor

 It can accurately measure the load change on the platform and can intuitively display the current load on the display.

Signal amplifier

 The output signal of the load sensor is very weak (mV level), and the controller cannot directly process the signal. Therefore, a signal amplifier is required to amplify the weakly changed differential signal output by the sensor for the controller to process.

The method to confirm whether the load sensor is normal:

- 1. In platform box, find the connector "X706"
- Turn on the machine, measure the input voltage to load sensor (Between pin 2 & 5: 8V);
- No load on platform, measure the output voltage of signal 1 and signal 2 respectively (about 1.9mV);
- 4. Rated load on platform (900lb), measure the output voltage of signal 1 and signal 2 in the same way (about 3.9mV).

X168

X166

	Signal 1, Signal 2 (Pin 1 & 3; pin 4 & 6)	Amplified signals (Menu, diagnose, sensor status)
No load	1.9mV	1300mV
Rated load	3.9mV	2200mV

- **Note:** The values measured above are for reference only.
- **Note:** When it is difficult to judge, disconnect load sensor from amplifier to eliminate interference of the amplifier with the signal (see picture).

Load Sensor Calibration

- 1. Make sure that the machine is parked on a flat, level and firm ground and that the platform is level.
- From the Main Menu, press the Menu button and from the Menu interface, press the down button "↓ / –" to select the "Password" menu and press the Enter button (【).

- 3. Enter the password "9735," then press and hold the Enter button (
- Press the down button "♣ / ■" to select the "Calibration Setting" menu and press the Enter button (【】).
- 5. Inside the Sensor Calibration menu, select "Load Cell" and press the Enter button (
- 6. With the platform completely empty of tools and personnel, press & hold the "Empty" button for several seconds to calibrate the "empty-load".
- 7. Put the maximum rated load on platform, then press "Full" button for several seconds to calibrate the "full-load".

Oscillating Axle

At the front axle, there are 2 oscillating cylinders:

• When the machine is driving at stowed state, the spools on these 2 cylinders open the oil circuit, allowing the front axle to oscillate freely according to the terrain. And the corresponding icon will light up.

• In other cases, the oscillating axle of the machine is in a lock state, and the axle cannot oscillate to ensure the safety of the machine.

Input Pin	Lock State	Oscillate State
C2: 34 Left Oscillating Cylinder: Signal 3 NO	False	True
C2: 35 Left Oscillating Cylinder: Signal 1 NC	True	False
C2: 36 Right Oscillating Cylinder: Signal 4 NO	False	True
C2: 37 Right Oscillating Cylinder: Signal 2 NC	True	False

Turntable Proximity Switches (NO)

These 3 switches are used to detect what state the turntable is currently in.

If the turntable deviates from the middle position within 15° to the left or right, and two or more limit switches are triggered, the control system will determine that the turntable is currently in the middle position.

If the turntable is not in the middle position, the system will limit some of the machine's functions to ensure the safety of operators.

I/O status of main controller

Input pin	Description
C2: 42 Turntable Proximity Switch: Left	
C2: 55 Turntable Proximity Switch: Right	False: Out Of Middle Position
C2: 56 Turntable Proximity Switch: Middle	

Function System

Function Pump

Function Pump		
Displacement	45cc	
Rated Working Pressure	265bar	

Rotary Coupling

The rotating joint can be divided into two parts: Electrical part & Hydraulic part.

It can connect the wires and oil pipes between chassis and turntable, so that the turntable can rotate 360° without interruption.

The Chassis valve block location at the chassis front side.

It can realize the function of chassis movement, for example release the wheel brake, differential lock, four wheels steering, frame leveling (Option).

Refer to page 72 for the schematic.

PVG

The PVG is located at right side of the machine. By controlling the opening and closing of the oil circuit, many functions of boom movement can be realized.

Through the "M port", the oil pressure inside the valve block can be measured to check whether the oil system is normal.

Function Enable

No matter what you want to do (main-boom amplitude, turntable rotation...), first of all, the piece 1 will be energized.

Under the premise that piece 1 is energized, if piece 2 is energized, the main-boom can be extended or retracted; if piece 3 is energized, the main-boom can be lifted or lowered, etc.

Platform Valve Block

When the piece 1 & piece 6 of PVG are energized, then the oil will flow into the platform valve block. Various functions are realized by controlling the valves on the platform valve block.

For this valve block, it has 2 functions: platform swing, and jib amplitude.

Drive System

Drive-motor

Drive-Pump

rotary-coupling).

Drive-motor		
Displacement	90cc	
Rated Working Pressure	400bar	

Drive-axle

The drive motor can provide power to the drive-axle, thereby realizing the function of four-wheel drive. At the same time, the front and rear axles are each equipped with a steering cylinder, so this model also has the function of four-wheel steering: 2-wheel mode, 4-wheel mode, and crab mode.

The engine can drive the drive-pump (Drive-pump, 90cc) to run, so that hydraulic oil flows into the drive-motor (via

Wheel Reducer Gear

For detailed information on checking the gear oil level, refer to page 26.

For detailed information on changing the gear oil level, refer to page 32.

For detailed information on the wheel nut torque, refer to page 23.

Gear Oil		
Sae Viscosity Grade	80W-90	
Industry Specification	API GL-5	
Recommended Oil	Mobil Delvac™ Gear Oil 80W-90	

Auxiliary Power System

If primary power fails while the platform is elevated, use the Auxiliary Power System to safely lower the platform.

Do not climb down the boom assembly or exit the platform while elevated.

ALWAYS check over, under and around the machine for personnel, structures and obstructions before activating any control function and continue to watch for hazards while operating the machine.

This function uses battery power from the auxiliary battery to lower the platform.

- Push and hold the Auxiliary Power Switch, then use the Boom Extend/Retract function to retract the boom.
- Continue to hold the Auxiliary Power Switch, then use the Boom Lift/Lower function to lower the boom.

The Auxiliary Power System is used to lower the platform in case of primary power failure. To lower the platform, activate the Auxiliary Power Switch to run the auxiliary hydraulic pump. Pushing the Auxiliary Power Switch will energize the emergency-pump contactor. Afterwards, the batteries can provided power to the emergency-pump. The emergency pump can then supply hydraulic oil to the machine and be used to lower the boom and or the platform.

Electrical Schematic, Lower Controls

Electrical Schematic, Chassis

Hydraulic Schematic

Chassis Valve Block Schematic

PVG Ports

Chassis Valve Block Ports

Platform Valve Block Ports

